Structural Damage Detection Using Chaotic Interrogation

Lillian Y. Chang¹ Karl A. Erickson² Kenton G. Lee³

Mentor: Michael D. Todd⁴

¹Stanford University, Stanford, CA, ²University of California, Los Angeles, CA, ³Embry-Riddle Aeronautical University, Prescott, AZ

⁴ Dept. of Structural Engineering, University of California, San Diego, CA

Overview

Structural health monitoring

Chaotic interrogation method

Experimental procedure

Damage detection results

Structural health monitoring

- Assess integrity of structural systems
- Reduce maintenance costs
- Extend operational lifetime
- Goals:
 - Identify damage
 - Estimate extent
 - Locate damage
 - Predict future life of structure

Degradation of bolted joints

- Bolts extensively used in large systems
 - Popular for resisting moments
 - Ease of disassembly
- Degradation
 - Loosen under creep,vibration, shock,thermal loading
 - Failure often catastrophic

Damage detection strategies

- Traditional modal-based approaches
 - Stochastic, broad-band excitation
 - Analyze transient dynamic behavior

- New method: chaotic interrogation
 - Deterministic input
 - Analyze steady state response

Chaotic interrogation method

- Determinism of chaotic input
 - Repeatable excitation for probing structure

Generated by deterministic ordinary differential equations

- High enough to reflect dynamic range of structure
- Low enough for robust calculation of diagnostic feature

Time series analysis concepts

- Visualizing attractors in phase space
- Reconstructing attractors in practice
- Comparing attractors with prediction error

Visualizing systems in phase space

System of 1st order differential equations

$$\dot{x}_1 = F_1(\vec{x}, \dot{\vec{x}})$$

$$\dot{x}_2 = F_2(\vec{x}, \dot{\vec{x}})$$

$$\vdots$$

$$\dot{x}_N = F_N(\vec{x}, \dot{\vec{x}})$$

Plot in *N*-dimensional space

System evolution into attractors

 Dissipative & stable systems eventually collapse onto lower dimensional orbit

One-dimensional limit cycle:

Steady-state response: 'attractor'

Chaotic attractors

- Sensitive to small changes in parameters
- Lorenz attractor:
 - Inspired by weather modeling research
 - 3-dimensional system

$$\dot{x} = q(y - x)$$

$$\dot{y} = -xz + rx - y$$

$$\dot{z} = xy - bz$$

Reconstruction of attractors

- Difficult to measure all degrees of freedom in real systems
- System dynamics captured qualitatively in one degree of freedom

$$\begin{array}{ccc}
\dot{x}_1 = F_1(\vec{x}, \dot{\vec{x}}) & \longrightarrow & x_1(t) \\
\dot{x}_2 = F_2(\vec{x}, \dot{\vec{x}}) & \dot{x}_1(t) \\
\vdots & \vdots & \vdots \\
\dot{x}_N = F_N(\vec{x}, \dot{\vec{x}}) & x_1^{(N)}(t)
\end{array}$$

Delay coordinate reconstruction

- Time-shifted delay of original time series rather than continuous derivatives
- Embed x with
 T time step delays
 for m dimensions

$$\begin{array}{ccc} x_1(t) & x_1(t) \\ \dot{x}_1(t) & & \\ \vdots & & \vdots \\ x_1^{(N)}(t) & x_1(t+(m-1)T) \end{array}$$

- Captures equivalent topology (Takens, 1981)
- Useful for discrete data acquisition

Reconstruction of Lorenz attractor

$$\dot{x} = q(y - x) \qquad x(t)$$

$$\dot{y} = -xz + rx - y \qquad \Rightarrow \qquad x(t + T)$$

$$\dot{z} = xy - bz \qquad x(t + 2T)$$

Comparing attractors

- Measure responses from different locations
- Reconstruct attractors from data signals

- Damage causes uncoupled responses
- Changes relationship between attractors

Cross-prediction error as a feature

Experimental Setup

Experimental Procedure

$$\dot{x} = q(y - x)$$

$$\dot{y} = -xz + rx - y$$

Numerically solve Lorenz differential equations

$$\dot{z} = xy - bz$$

Select first coordinate as input voltage signal (deterministic)

Reconstruct attractors with appropriate delay and embedding dimension

Calculate prediction errors between pairs of attractors

Typical input & output signals

Damage Conditions

Damage Case	Description	Bolt Preload (N)
1	27 N-m torque	10400
2	14 N-m torque	7860
3	7 N-m torque	6420
4	3 N-m torque	5450
5	1 N-m torque	4780
6	Finger tight	4550
7	Loose no gap	
8	Loose with gap	

Excitation predicting response

Response pair predictions

July 30, 2003

21

Statistical variation of results

- Large spread of prediction error with increasing damage
- One-sided
 Kolmogorov-Smirnov
 test distinguishes
 between the loose
 and tight damage
 conditions

Conclusions

- Able to detect loose bolt, but not extent of damage
- Able to qualitatively locate loose bolt by calculating error of excitation predicting response
- Both prediction error mean and standard deviation increase with damage, in selected cross-comparisons
- Need further detailed studies to quantify correlation between prediction error and bolt tension pre-load

Recommendations

- Use an instrumented bolt more sensitive to loads in the transition range
- Decrease computation time for practical applications
- Investigate sensitivity to:
 - Rate of input chaotic waveform
 - Relative direction of shaker excitation and loosened bolt
 - Accelerometer positions relative to damage
- Apply to other modes of failure

Acknowledgements

- Chuck Farrar (LANL) for hosting Los Alamos Dynamics Summer School program, funded by DOE
- Jonathan Nichols (NRL) for chaotic interrogation advice
- Matt Bement (LANL) for help with data acquisition software
- Jeannette Wait (LANL) for help with instrumentation
- The MathWorks, Inc., for MATLAB® 6.5
- R. Hegger, H. Kantz, and T. Schreiber, for the TISEAN package
- Vibrant Technologies, for ME'ScopeVES
- Hibbitt, Karlsson, and Sorensen, Inc. for ABAQUS\CAE
- Dynamic Design Solutions, for FEMTools

Questions or Comments?

Choosing time delay T

- Maximize new information
 - Avoid redundancy
 - Still preserve relationship

T too small: over-correlated

- Time when least self-correlated
 - Auto-correlation function
 - Mutual-information

T too large: unrelated

Choosing embedding dimension m

- Unambiguously 'unfold' attractor
 - Reveal system topography
 - Often lower dimension than original system
- False-nearest neighbors approach
 - Exclude temporal neighbors
 - Repeatedly embed until have few neighbors

